Abstract
AbstractBackground and ObjectiveHeterogeneous complex networks are large graphs consisting of different types of nodes and edges. The process of mining and knowledge extraction from these networks is so complicated. Moreover, the scale of these networks is steadily increasing. Thus, scalable methods are required.MethodsIn this paper, two distributed label propagation algorithms for heterogeneous networks, namely DHLP-1 and DHLP-2 have been introduced. Biological networks are one type of the heterogeneous complex networks. As a case study, we have measured the efficiency of our proposed DHLP-1 and DHLP-2 algorithms on a biological network consisting of drugs, diseases, and targets. The subject we have studied in this network is drug repositioning but our algorithms can be used as general methods for heterogeneous networks other than the biological network.ResultsWe compared the proposed algorithms with similar non-distributed versions of them namely MINProp and Heter-LP. The experiments revealed the good performance of the algorithms in terms of running time and accuracy.
Publisher
Cold Spring Harbor Laboratory