Development of a multiparent advanced generation intercross (MAGIC) population for genetic exploitation of complex traits in Brassica juncea: glucosinolate content as an example

Author:

Wang Tianya,Wan Wei,Yu Kunjiang,Khattak Aimal Nawaz,Ye Botao,Yang Renqin,Tian EntangORCID

Abstract

AbstractMultiparent advanced generation intercross (MAGIC) populations have recently been developed to allow the high-resolution mapping of complex quantitative traits. This article describes the development of one MAGIC population and verifies its potential application for mapping quantitative trait loci (QTLs) in B. juncea. The population was developed from eight founders with diverse traits and composed of 408 F6 recombinant inbred lines (RILs). To develop one rapid and simplified way for using the MAGIC population, a subset of 133 RILs as the primary mapping population were genotyped using 346 intron-length polymorphism (ILP) polymorphic markers. The population lacks significant signatures of population structure that are suitable for the analysis of complex traits. Genome-wide association mapping (GWAS) identified three major glucosinolate (GSL) QTLs of QGsl.ig01.1 on J01 for indole GSL (IG), QGsl.atg09.1 on J09 and QGsl.atg11.1 on J11 for aliphatic GSL (AG) and total GSL (TG). The candidate genes for QGsl.ig01.1, QGsl.atg09.1 and QGsl.atg11.1 are GSH1, GSL-ALK and MYB28, which are involved in converting glutamate and cysteine to γ–EC, the accumulation of glucoraphanin, and the whole process of AG metabolism, respectively. One effective method for association mapping of quantitative traits in the B. juncea MAGIC population is also suggested by utilization of the remaining 275 RILs and incorporation of the novel kompetitive allele specific PCR (KASP) technique. In addition to its QTL mapping purpose, the MAGIC population could also be potentially utilized in variety development by breeders.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3