RECTA: Regulon Identification Based on Comparative Genomics and Transcriptomics Analysis

Author:

Chen Xin,Ma Anjun,McDermaid Adam,Zhang Hanyuan,Liu Chao,Cao Huansheng,Ma Qin

Abstract

ABSTRACTRegulons, which serve as co-regulated gene groups contributing to the transcriptional regulation of microbial genomes, have the potential to aid in understanding of underlying regulatory mechanisms. In this study, we designed a novel computational pipeline, RECTA, for regulon prediction related to the gene regulatory network under certain conditions. To demonstrate the effectiveness of this tool, we implemented RECTA onLactococcus lactisMG1363 data to elucidate acid-response regulons.Lactococcus lactisis one of the most important Gram-positive lactic acid-producing bacteria, widely used in food industry and has been proved to have advantages in oral delivery of drug and vaccine. The pipeline carries out differential gene expression, gene co-expression analysis,cis-regulatory motif finding, and comparative genomics to predict and validate regulons related to acid stress response. A total of 51 regulonswere identified, 14 of which have computational-verified significance. Among these 14 regulons, five of them were computationally predicted to be connected with acid stress response with (i) known transcriptional factors in MEME suite database successfully mapped inLactococcus lactisMG1363; and (ii) differentially expressed genes between pH values of 6.5 (control) and 5.1 (treatment). Validated by 36 literature confirmed acid stress response related proteins and genes, 33 genes inLactococcus lactisMG1363 were found having orthologous genes using BLAST, associated to six regulons. An acid response related regulatory network was constructed, involving two trans-membrane proteins, eight regulons (llrA, llrC, hllA, ccpA, NHP6A,rcfB, regulons #8 and #39), nine functional modules, and 33 genes with orthologous genes known to be associated to acid stress. Our RECTA pipeline provides an effective way to construct a reliable gene regulatory network through regulon elucidation. The predicted response pathways could serve as promising candidates for better acid tolerance engineering inLactococcus lactis. RECTA has strong application power and can be effectively applied to other bacterial genomes where the elucidation of the transcriptional regulation network is needed.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3