Unified inference of missense variant effects and gene constraints in the human genome

Author:

Huang Yi-FeiORCID

Abstract

A challenge in medical genomics is to identify variants and genes associated with severe genetic disorders. Based on the premise that severe, early-onset disorders often result in a reduction of evolutionary fitness, several statistical methods have been developed to predict pathogenic variants or constrained genes based on the signatures of negative selection in human populations. However, we currently lack a statistical framework to jointly predict deleterious variants and constrained genes from both variant-level features and gene-level selective constraints. Here we present such a unified approach, UNEECON, based on deep learning and population genetics. UNEECON treats the contributions of variant-level features and gene-level constraints as a variant-level fixed effect and a gene-level random effect, respectively. The sum of the fixed and random effects is then combined with an evolutionary model to infer the strength of negative selection at both variant and gene levels. Compared with previously published methods, UNEECON shows unmatched performance in predicting missense variants and protein-coding genes associated with autosomal dominant disorders, and feature importance analysis suggests that both gene-level selective constraints and variant-level predictors are important for accurate variant prioritization. Furthermore, based on UNEECON, we observe an unexpected low correlation between gene-level intolerance to missense mutations and that to loss-of-function mutations, which can be partially explained by the prevalence of disordered protein regions that are highly tolerant to missense mutations. Finally, we show that genes intolerant to both missense and loss-of-function mutations play key roles in the central nervous system and the autism spectrum disorders. Overall, UNEECON is a promising framework for both variant and gene prioritization.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3