High-performance chemical and light-inducible recombinases in mammalian cells and mice

Author:

Weinberg Benjamin H.ORCID,Cho Jang Hwan,Agarwal Yash,Pham N. T. Hang,Caraballo Leidy D.,Walkosz Maciej,Ortega Charina,Trexler Micaela,Tague Nathan,Law Billy,Benman William K. J.,Letendre Justin,Beal JacobORCID,Wong Wilson W.ORCID

Abstract

ABSTRACTSite-specific DNA recombinases are some of the most powerful genome engineering tools in biology. Chemical and light-inducible recombinases, in particular, enable spatiotemporal control of gene expression. However, the availability of inducible recombinases is scarce due to the challenge of engineering high performance systems with low basal activity and sufficient dynamic range. This limitation constrains the sophistication of genetic circuits and animal models that can be created. To expand the number of available inducible recombinases, here we present a library of >20 orthogonal split recombinases that can be inducibly dimerized and activated by various small molecules, light, and temperature in mammalian cells and mice.Furthermore, we have engineered inducible split Cre systems with better performance than existing inducible Cre systems. Using our orthogonal inducible recombinases, we created a “genetic switchboard” that can independently regulate the expression of 3 different cytokines in the same cell. To demonstrate novel capability with our split recombinases, we created a tripartite inducible Flp and a 4-Input AND gate. We have performed extensive quantitative characterization of the inducible recombinases for benchmarking their performances, including computation of distinguishability of outputs in terms of signal-to-noise ratio (SNR). To facilitate sharing of this set of reagents, we have deposited our library to Addgene. This library thus significantly expands capabilities for precise and multiplexed mammalian gene expression control.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3