Abstract
Key determinants in the emergence of complex cellular morphologies and functions are cues in the micro-environment. Primary among these is the presence of neighboring cells as networks form. Therefore, for high-resolution analysis, it is crucial to develop micro-environments that permit exquisite control of network formation. This is especially true in cell science, tissue engineering, and clinical biology. We introduce a new approach for assembling polydimethylsiloxane (PDMS)-based microfluidic environments that enhances cell network formation and analyses. We report that the combined processes of PDMS solvent-extraction (E-PDMS) and hydrothermal annealing create unique conditions that produce high-strength bonds between E-PDMS and glass – properties not associated with conventional PDMS. Extraction followed by hydrothermal annealing removes unbound oligomers, promotes polymer cross-linking, facilitates covalent bond formation with glass, and retains the highest biocompatibility. Our extraction protocol accelerates oligomer removal from 5 to 2 days. Resulting microfluidic platforms are uniquely suited for cell-network studies owing to high bond strengths, effectively corralling cellular extensions and eliminating harmful oligomers. We demonstrate simple, simultaneous actuation of multiple microfluidic domains for invoking ATP- and glutamate-induced Ca2+ signaling in glial-cell networks. These low-cost, simple E-PMDS modifications and flow manipulations further enable microfluidic technologies for cell-signaling and network studies as well as novel applications.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献