Author:
Iandolo Donata,Pennacchio Fabrizio A.,Mollo Valentina,Rossi Domenico,Dannhauser David,Cui Bianxiao,Owens Roisin M.,Santoro Francesca
Abstract
AbstractCell fate is largely determined by interactions that occur at the interface between cells and their surrounding microenvironment. For this reason, especially in the field of cell- and tissue-engineering, there is a growing interest in developing characterization techniques that allow a deep evaluation of cell-material interaction at the nanoscale, particularly focusing on cell adhesion processes. While for 2D culturing systems a consolidated series of tools already satisfy this need, in 3D environments, more closely recapitulating complex in vivo structures, there is still a lack of procedure furthering the comprehension of cell-material interactions. Here, we report for the first time the use of a SEM/FIB system for the characterization of cellular adhesion in 3D scaffolds fabricated by means of different techniques. Our results clearly show the capability of the developed approach to finely resolve both scaffold-cells interface and nanometer scale features of cell bodies involved in the upregulation of cellular behavior. These results are relevant for studying cellular guidance strategies and for the consequent design of more efficient cell-instructive platforms for tissue-engineering applications as well as for in vitro 3D models.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献