Structural elements required for coupling ion and substrate transport in the neurotransmitter transporter homolog LeuT

Author:

Zhang Yuan-Wei,Tavoulari Sotiria,Sinning SteffenORCID,Aleksandrova Antoniya A.ORCID,Forrest Lucy R.ORCID,Rudnick GaryORCID

Abstract

AbstractThe coupled transport of ions and substrates allows transporters to accumulate substrates using the energy in transmembrane ion gradients and electrical potentials. During transport, conformational changes that switch accessibility of substrate and ion binding sites from one side of the membrane to the other must be controlled so as to prevent uncoupled movement of ions or substrates. In the Neurotransmitter:Sodium Symporter (NSS) family, Na+ stabilizes the transporter in an outward-open state, thus decreasing the likelihood of uncoupled Na+ transport. In a step essential for coupled transport, substrate binding must overcome the effect of Na+, allowing intracellular substrate and Na+ release from an inward-open state. However, it is unclear which specific elements of the protein mediate this conformational response to substrate binding. Previously, we showed that in the prokaryotic NSS transporter LeuT, the effect of Na+ on conformation occurs at the Na2 site, where it influences conformation by fostering interaction between two domains of the protein (JBC 291: 1456, 2016). Here, we identify a conserved tyrosine residue in the substrate binding site required for substrate to enable conversion to inward-open states by establishing an interaction between the two transporter domains. We further identify additional interactions between the two transporter domains in the extracellular pathway that are required. Together with our previous work on the conformational effect of Na+, these results identify mechanistic components underlying ion-substrate coupling in NSS transporters.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3