Telomere DNA G-quadruplex folding within actively extending human telomerase

Author:

Jansson Linnea I.,Parks Joseph W.,Hentschel Jendrik,Chang Terren R.,Baral Rishika,Bagshaw Clive R.,Stone Michael D.

Abstract

ABSTRACTTelomerase maintains telomere length by reverse transcribing short G-rich DNA repeat sequences from its internal RNA template. G-rich telomere DNA repeats readily fold into G-quadruplex (GQ) structures in vitro, and the presence of GQ-prone sequences throughout the genome introduces challenges to replication in vivo. Using a combination of ensemble and single-molecule telomerase assays we discovered that GQ folding of the nascent DNA product during processive addition of multiple telomere repeats modulates the kinetics of telomerase catalysis and dissociation. Telomerase reactions performed with telomere DNA primers of varying sequence or using K+ versus Li+ salts yield changes in DNA product profiles consistent with formation of GQ structure within the telomerase-DNA complex. Single-molecule FRET experiments reveal complex DNA structural dynamics during real-time catalysis, supporting the notion of nascent product folding within the active telomerase complex. To explain the observed distributions of telomere products, we fit telomerase time series data to a global kinetic model that converges to a unique set of rate constants describing each successive telomere repeat addition cycle. Our results highlight the potential influence of the intrinsic folding properties of telomere DNA during telomerase catalysis and provide a detailed characterization of GQ modulation of polymerase function.SIGNIFICANCETelomeres protect the ends of linear chromosomes from illicit DNA processing events that can threaten genome stability. Telomere structure is built upon repetitive G-rich DNA repeat sequences that have the ability to fold into stable secondary structures called G-quadruplexes (GQs). In rapidly dividing cells, including the majority of human cancers, telomeres are maintained by the specialized telomerase enzyme. Thus, telomerase and its telomere DNA substrates represent important targets for developing novel cancer drugs. In this work, we provide evidence for GQ folding within the newly synthesized DNA product of an actively extending telomerase enzyme. Our results highlight the delicate interplay between the structural properties of telomere DNA and telomerase function.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3