Improved Characterization of the Solution Kinetics and Thermodynamics of Biotin, Biocytin and HABA Binding to Avidin and Streptavidin

Author:

Delgadillo Roberto F.,Mueser Timothy C.,Zaleta-Rivera Kathia,Carnes Katie A.,González-Valdez José,Parkhurst Lawrence J.

Abstract

ABSTRACTThe high affinity (KD∼ 10−15M) of biotin to avidin and streptavidin is the essential component in a multitude of bioassays with many experiments using biotin modifications to invoke coupling. Equilibration times suggested for these assays assume that the association rate constant (kon) is approximately diffusion limited (109M−1s−1) but recent single molecule and surface binding studies indicate they are slower than expected (105to 107M−1s−1). In this study, we asked whether these reactions in solution are diffusion controlled, what reaction model and thermodynamic cycle described the complex formation, and the functional differences between avidin and streptavidin. We have studied the biotin association by two stopped-flow methodologies using labeled and unlabeled probes: I) fluorescent probes attached to biotin and biocytin; and II) unlabeled biotin and HABA, 2-(4’-hydroxyazobenzene)-benzoic acid. Native avidin and streptavidin are homo-tetrameric and the association data show no cooperativity between the binding sites. The konvalues of streptavidin are faster than avidin but slower than expected for a diffusion limited reaction in both complexes. Moreover, the Arrhenius plots of the konvalues revealed strong temperature dependence with large activation energies (6-15 kcal/mol) that do not correspond to a diffusion limited process (3-4 kcal/mol). The data suggest that the avidin binding sites are deeper and less accessible than those of streptavidin. Accordingly, we propose a simple reaction model with a single transition state for non-immobilized reactants whose forward thermodynamic parameters complete the thermodynamic cycle in agreement with previously reported studies. Our new understanding and description of the kinetics, thermodynamics and spectroscopic parameters for these complexes will help to improve purification efficiencies, molecule detection, and drug screening assays or find new applications.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3