Thousands of primer-free, high-quality, full-length SSU rRNA sequences from all domains of life

Author:

Karst Søren M.,Dueholm Morten S.,McIlroy Simon J.,Kirkegaard Rasmus H.,Nielsen Per H.,Albertsen Mads

Abstract

AbstractRibosomal RNA (rRNA) genes are the consensus marker for determination of microbial diversity on the planet, invaluable in studies of evolution and, for the past decade, high-throughput sequencing of variable regions of ribosomal RNA genes has become the backbone of most microbial ecology studies. However, the underlying reference databases of full-length rRNA gene sequences are underpopulated, ecosystem skewed1, and subject to primer bias2, which hamper our ability to study the true diversity of ecosystems. Here we present an approach that combines reverse transcription of full-length small subunit (SSU) rRNA genes and synthetic long read sequencing by molecular tagging, to generate primer-free, full-length SSU rRNA gene sequences from all domains of life, with a median raw error rate of 0.17%. We generated thousands of full-length SSU rRNA sequences from five well-studied ecosystems (soil, human gut, fresh water, anaerobic digestion, and activated sludge) and obtained sequences covering all domains of life and the majority of all described phyla. Interestingly, 30% of all bacterial operational taxonomic units were novel, compared to the SILVA database (less than 97% similarity). For the Eukaryotes, the novelty was even larger with 63% of all OTUs representing novel taxa. In addition, 15% of the 18S rRNA OTUs were highly novel sequences with less than 80% similarity to the databases. The generation of primer-free full-length SSU rRNA sequences enabled eco-system specific estimation of primer-bias and, especially for eukaryotes, showed a dramatic discrepancy between the in-silico evaluation and primer-free data generated in this study. The large amount of novel sequences obtained here reaffirms that there is still vast, untapped microbial diversity lacking representatives in the SSU rRNA databases and that there might be more than millions after all1, 3. With our new approach, it is possible to readily expand the rRNA databases by orders of magnitude within a short timeframe. This will, for the first time, enable a broad census of the tree of life.

Publisher

Cold Spring Harbor Laboratory

Reference31 articles.

1. Status of the Archaeal and Bacterial Census: an Update

2. Metagenomics uncovers gaps in amplicon-based detection of microbial diversity

3. After All, Only Millions?;MBio,2016

4. Poly(A) Polymerase Modification and Reverse Transcriptase PCR Amplification of Environmental RNA

5. A comparative study of microbial diversity and community structure in marine sediments using poly(A) tailing and reverse transcription-PCR;Front. Microbiol.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3