Abstract
ABSTRACTDevelopment of an effective human immunodeficiency virus (HIV) vaccine is among the highest priorities in the biomedical research agenda. Adjuvants enhance vaccine efficacy, but in the case of HIV, strong or inappropriate immune activation may undermine protection by increasing HIV susceptibility. Co-infection with immunomodulatory pathogens may also impact vaccine efficacy. In the rhesus macaque rectal SIVΔNef live attenuated vaccine model, we utilized a low virulence HSV-2 infection and the double-stranded RNA viral mimic polyICLC as tools to probe the effects of distinct types of immune activation on HIV vaccine efficacy and explore novel correlates of protection from wild type SIV. Rectally administered HSV-2 and polyICLC impacted the protection conferred by mucosal SIVΔNef vaccination by favoring partial protection in animals with breakthrough infection following virulent SIV challenge (“Controllers”). However, SIVΔNef persistence in blood and tissues did not predict protection in this rectal immunization and challenge model. Non-controllers had similar SIVΔNef viremia as completely protected macaques, and while they tended to have less replication competent SIVΔNef in lymph nodes, controllers had no recoverable virus in the lymph nodes. Non-controllers differed from protected macaques immunologically by having a greater frequency of pro-inflammatory CXCR3+CCR6+ CD4 T cells in blood and a monofunctional IFNγ-dominant CD8 T cell response in lymph nodes. Controller phenotype was associated with heightened IFNα production during acute SIV infection and a greater frequency of CXCR5+ CD4 T cells in blood pre-challenge despite a lower frequency of cells with the T follicular helper (Tfh) cell phenotype in blood and lymph nodes. Our results establish novel correlates of immunological control of SIV infection while reinforcing the potential importance of T cell functionality and location in SIVΔNef efficacy. Moreover, this work highlights that triggering of mucosal immunity can aid mucosal vaccine strategies rather than undermine protection.AUTHOR SUMMARYAn efficacious HIV vaccine is essential to contain the HIV pandemic. Vaccine-mediated protection from HIV may be either enhanced or obstructed by mucosal immune activation; thus, the impact of adjuvants and underlying co-infections that lead to immune activation needs to be evaluated. Using the SIV macaque model, we set out to study the impact of underlying infection with HSV-2 or treatment with the adjuvant polyICLC on rectal immunization with the live attenuated vaccine SIVΔNef. We found that neither stimulus impacted complete protection from SIV; however, the combination of HSV-2 and polyICLC improved control of infection in animals that were not completely protected. Compared with non-controller macaques, controllers had less inflammatory T cells before SIV challenge as well as greater gene expression of IFNα and more functional SIV-specific T cells after infection. The results add to our understanding of the mechanisms of SIVΔNef protection and demonstrate that mucosal immune activation does not necessarily undermine protection in mucosal vaccination against HIV.
Publisher
Cold Spring Harbor Laboratory