Abstract
The availability of nutrients impacts cell size and growth rate in many organisms. Research in E. coli has traditionally focused on the influence of exogenous nutrient sources on cell size through their effect on growth and cell cycle progression. Utilising a set of mutants where three genes involved in glycogen degradation - glycogen phosphorylase (glgP), glycogen debranching enzyme (glgX) and maltodextrin phosphorylase (malP) - were disrupted, we examined if endogenous polyglucan degradation affects cell size. It was found that mutations to malP increased cell lengths and resulted in substantial heterogeneity of cell size. This was most apparent during exponential growth and the phenotype was unaccompanied by alterations in Z-ring occurrence, cellular FtsZ levels and generation times. ΔmalP mutant cells did, however, accumulate increased DnaA amounts at late growth stages indicating a potential effect on DNA replication. Replication run-out experiments demonstrated that this was indeed the case, and that DNA replication was also affected in the other mutants. Bacteria with a disruption in glgX accumulated glycogen and protein inclusion bodies that coincided with each other at inter-nucleoid and polar regions.
Publisher
Cold Spring Harbor Laboratory