Author:
Ngassam V.N.,Su W.-C.,Gettel D. L.,Deng Y.,Yang Z.,Wang-Tomic N.,Sharma V. P.,Purushothaman S.,Parikh A. N.
Abstract
ABSTRACTSingle giant vesicles (GVs) rupture spontaneously from their salt-laden suspension onto solid surfaces. At hydrophilic surfaces, they rupture via a recurrent burst-heal dynamics: during burst, single pores nucleate at the contact boundary of the adhering vesicles facilitating asymmetric spreading and producing a “heart” shaped membrane patch. During the healing phase, the competing pore closure produces a daughter vesicle. At hydrophobic surfaces, by contrast, the GVs rupture via a distinctly different, yet recurrent, bouncing ball rhythm: Rendered tense by the substrate interactions, GVs porate and spread monomolecular layer on the hydrophobic surface in a symmetric manner. Here too, the competition from pore closure produces a daughter vesicle, which re-engages with the substrate. In both cases, the pattern of burst-reseal events repeats multiple times splashing and spreading the vesicular fragments as bilayer patches at the solid surface in a pulsatory manner. These remarkable recurrent dynamics arise not because of the elastic properties of the solid surface but because the competition between membrane spreading and pore healing, prompted by the surface-energy dependent adhesion, determine the course of the topological transition.STATEMENT OF SIGNIFICANCEGiant lipid vesicles adhering to a solid surface experience strong mechanical stresses. The contacting membrane segment loses thermal fluctuations and accumulates mechanical tension, the equilibration of which can give rise to global shape changes, lipid phase separation, and traction forces. Beyond a threshold tension, vesicles porate, unravel, and spread. Here, we find that a competition from pore-healing can make rupture iterative, rather than a single all-or-nothing event. During burst, single pores expand, spreading a lipid bilayer on the hydrophilic surface and a monolayer on the hydrophobic one. During heal, pore-healing can produce daughter vesicles. This burst-reseal event reiterates “splashing” portions of single vesicles at the solid surface and “bouncing” the remainder as a secondary vesicle in multiple steps.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献