Resistance to the antifungal activity of Aprotinin occurs through mutations in genes that function in cation homeostasis

Author:

McColl Amanda I.ORCID,Lowe Rohan G.T.,McKenna James A.,Anderson Marilyn A.,Bleackley Mark R.

Abstract

AbstractAn increase in the prevalence of fungal infections is coinciding with an increase of resistance to current clinical antifungals, placing pressure on the discovery of new antifungal candidates. One option is to investigate drugs that have been approved for use for other medical conditions that have secondary antifungal activity. Aprotinin, also known as Bovine Pancreatic Trypsin inhibitor (BPTI), is an antifibrinolytic that has been approved for systemic use in patients in some countries. Bleackley and coworkers (2014) revealed that BPTI also has antifungal activity against S. cerevisiae and C. albicans and does this by targeting the magnesium transporter ALR1. Here we have further investigated the potential for aprotinin to be used as an antifungal by assessing the development of resistance. We used an in vitro model to assess the evolution of BPTI resistance/tolerance whereby BPTI was serial passaged with the model organism S. cerevisiae. Resistance to BPTI developed more quickly than resistance to the plant defensin NaD1 and the clinical antifungal, caspofungin. Full genome sequencing of resistant lines revealed that resistance to BPTI developed as the result of a deleterious mutation in either the ptk2 or sky1 genes. This revealed that cation homeostasis and transport functions were particularly affected in S. cerevisiae after exposure to BPTI. Therefore, the mutations in these genes probably decreases release of magnesium and other cations from the cell, protecting the yeast from the limiting intracellular magnesium levels that arise when BPTI blocks the magnesium transporter Alr1p.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3