Epigenome-wide change and variation in DNA methylation from birth to late adolescence

Author:

Mulder Rosa H.ORCID,Neumann AlexanderORCID,Cecil Charlotte A. M.ORCID,Walton EstherORCID,Houtepen Lotte C.ORCID,Simpkin Andrew J.ORCID,Rijlaarsdam JolienORCID,Heijmans Bastiaan T.ORCID,Gaunt Tom R.ORCID,Felix Janine F.ORCID,Jaddoe Vincent W. V.ORCID,Bakermans-Kranenburg Marian J.,Tiemeier HenningORCID,Relton Caroline L.ORCID,van IJzendoorn Marinus H.ORCID,Suderman MatthewORCID

Abstract

AbstractDNA methylation (DNAm) is known to play a pivotal role in childhood health and development, but a comprehensive characterization of genome-wide DNAm trajectories across this age period is currently lacking. We have therefore performed a series of epigenome-wide association studies in 5,019 blood samples collected at multiple time-points from birth to late adolescence from 2,348 participants of two large independent cohorts. DNAm profiles of autosomal CpG sites (CpGs) were generated using the Illumina Infinium HumanMethylation450 BeadChip. Change over time was widespread, observed at over one-half (53%) of CpGs. In most cases DNAm was decreasing (36% of CpGs). Inter-individual variation in linear trajectories was similarly widespread (27% of CpGs). Evidence for nonlinear change and inter-individual variation in nonlinear trajectories was somewhat less common (11% and 8% of CpGs, respectively). Very little inter-individual variation in change was explained by sex differences (0.4% of CpGs) even though sex-specific DNAm was observed at 5% of CpGs. DNAm trajectories were distributed non-randomly across the genome. For example, CpGs with decreasing DNAm were enriched in gene bodies and enhancers and were annotated to genes enriched in immune-developmental functions. By contrast, CpGs with increasing DNAm were enriched in promoter regions and annotated to genes enriched in neurodevelopmental functions. These findings depict a methylome undergoing widespread and often nonlinear change throughout childhood. They support a developmental role for DNA methylation that extends beyond birth into late adolescence and has implications for understanding life-long health and disease. DNAm trajectories can be visualized at http://epidelta.mrcieu.ac.uk.

Publisher

Cold Spring Harbor Laboratory

Reference92 articles.

1. DNA methylation and epigenetic control of cellular differentiation

2. Genome-scale DNA methylation maps of pluripotent and differentiated cells

3. Cohort profile: the Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort;International Journal of Epidemiology,2012

4. X inactivation and the complexities of silencing a sex chromosome

5. DNA methylation in the human placenta and fetal growth;Molecular medicine reports,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3