Stabilizing selection of seasonal influenza receptor binding in populations with partial immunity

Author:

Hay James A.ORCID,Junus Alvin,Riley StevenORCID,Yuan Hsiang-YuORCID

Abstract

AbstractMutations that alter cellular receptor binding of influenza hemagglutinin (HA) have profound effects on immune escape. Despite its high mutation rate, it is not fully understood why human influenza HA displays limited antigenic diversity across circulating viruses. We applied phylogenetic analysis and phylodynamic modeling to understand the evolutionary and epidemiological effects of binding avidity adaptation in humans using net charge as a marker for receptor binding avidity. Using 686 human influenza A/H3N2 HA sequences, we found that HA net charge followed an age-specific pattern. Phylogenetic analysis suggested that many binding variants have reduced fitness. Next, we developed an individual-based disease dynamic model embedded with within-host receptor binding adaptation and immune escape in a population with varied partial immunity. The model showed that mean binding avidity was unable to adapt to values that maximized transmissibility due to competing selective forces between within- and between-host levels. Overall, we demonstrated stabilizing selection of virus binding in a population with increasing partial immunity. These findings have potential implications in understanding the evolutionary mechanisms that determine the intensity of seasonal influenza epidemics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3