A Deep Learning Semiparametric Regression for Adjusting Complex Confounding Structures

Author:

Mi XinleiORCID,Tighe Patrick,Zou Fei,Zou Baiming

Abstract

Deep Treatment Learning (deepTL), a robust yet efficient deep learning-based semiparametric regression approach, is proposed to adjust the complex confounding structures in comparative effectiveness analysis of observational data, e.g. electronic health record (EHR) data, in which complex confounding structures are often embedded. Specifically, we develop a deep learning neural network with a score-based ensembling scheme for flexible function approximation. An improved semiparametric procedure is further developed to enhance the performance of the proposed method under finite sample settings. Comprehensive numerical studies have demonstrated the superior performance of the proposed methods as compared with existing methods, with a remarkably reduced bias and mean squared error in parameter estimates. The proposed research is motivated by a post-surgery pain study, which is also used to illustrate the practical application of deepTL. Finally, an R package, “deepTL”, is developed to implement the proposed method.

Publisher

Cold Spring Harbor Laboratory

Reference42 articles.

1. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies

2. Bengio, Y. , Delalleau, O. and Roux, N. L. (2006). The curse of highly variable functions for local kernel machines. In Advances in Neural Information Processing Systems 107–114.

3. A Comparison of Observational Studies and Randomized, Controlled Trials

4. Bagging predictors

5. Choosing between randomised and non-randomised studies: a systematic review;Health Technology Assessment (Winchester, England),1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3