Effect of hydrogen inhalation on IL-40 and SIgA in a Rat Model of Pulmonary Mucosal Immunity

Author:

Ma Yiping,Li Zhu,Zhao Yalei,Sun Mo,Sun Wuzhuang,Wang Jiechao

Abstract

AbstractBackgroundRecently, some researchers have reported that PIgR expression is down-regulated in Chronic Obstructive Pulmonary Disease (COPD) and SIgA deficiency correlates with severity of airflow obstruction. What’ s more, some studies have demonstrated that 2 percent of hydrogen or hydrogen water is effective in treating and preventing various diseases.ObjectivesThe aim of this study was to observe the effect of hydrogen on the expression of SIgA, PIgR, IL-4, IL-5, TGF-β1 and IL-40 in lung tissue of COPD rats, to study the relationship between lung pathology parameter and SIgA, PIgR, therefore we can understand the effect of hydrogen on the development of COPD by changing SIgA expression of airway mucosal in COPD rats.MethodsA rat model of COPD was established by cigarette smoke exposure, and different concentrations of hydrogen were inhaled as intervention measures. After 4 months of cigarette smoke exposure, pathologic changes and airway wall remodeling of the lung were assessed by optical microscope. The protein expressions of SIgA, PIgR, IL-4, IL-5, TGF-β1 as well as IL-40 in the lung tissues were observed by immunohistochemistry or Western blot. The correlation between lung pathology parameter and the expression of SIgA, PIgR was analyzed. The correlation between SIgA and the expression of IL-4, IL-5, TGF-β1 and IL-40 was analyzed.ResultsThe results showed that hydrogen inhalation significantly ameliorated lung pathology and airway wall remodeling, increased the protein expression of SIgA, PIgR, IL-4, IL-5, and IL-40, and reduced the protein expression of TGF-β1.ConclusionsInhalation of 22% and 41.6% hydrogen showed a better effect than inhalation of 2% hydrogen. Hydrogen inhalation can significantly improve the expression of SIgA on the mucosal surface of COPD rats, which may be one of the mechanisms which hydrogen works on COPD pathogenesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3