An Ensembled Deep Learning Model Outperforms Human Experts in Diagnosing Biliary Atresia from Sonographic Gallbladder Images

Author:

Zhou Wenying,Yang Yang,Yu Cheng,Liu Juxian,Duan Xingxing,Weng Zongjie,Chen Dan,Liang Qianhong,Qing Fang,Zhou Jiaojiao,Ju Hao,Luo Zhenhua,Guo Weihao,Ma Xiaoyan,Xie Xiaoyan,Wang Ruixuan,Zhou Luyao

Abstract

AbstractIt is still difficult to make accurate diagnosis of biliary atresia (BA) by sonographic gallbladder images particularly in rural area lacking relevant expertise. To provide an artificial intelligence solution to help diagnose BA based on sonographic gallbladder images, an ensembled deep learning model was developed based on a small set of sonographic images. The model yielded a patient-level sensitivity 93.1% and specificity 93.9% (with AUROC 0.956) on the multi-center external validation dataset, superior to that of human experts. With the help of the model, the performance of human experts with various levels would be improved further. Moreover, the diagnosis based on smartphone photos of sonographic gallbladder images through a smartphone app and based on video sequences by the model still yielded expert-level performance. Our study provides a deep learning solution to help radiologists improve BA diagnosis in various clinical application scenarios, particularly in rural and undeveloped regions with limited expertise.

Publisher

Cold Spring Harbor Laboratory

Reference36 articles.

1. Biliary atresia;Lancet (London, England),2009

2. Epidemiology of Biliary Atresia: A Population-based Study

3. The frequency and outcome of biliary atresia in the UK and Ireland;Lancet (London, England),2000

4. Universal screening for biliary atresia using an infant stool color card in Taiwan

5. Time-space distribution of extrahepatic biliary atresia in The Netherlands and West Germany;Zeitschrift fur Kinderchirurgie : organ der Deutschen, der Schweizerischen und der Osterreichischen Gesellschaft fur Kinderchirurgie = Surgery in infancy and childhood,1988

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3