Sailing in rough waters: examining volatility of fMRI noise

Author:

Leppanen Jenni,Stone Henry,Lythgoe David J.,Williams Steven,Horvath Blanka

Abstract

AbstractBackgroundThe assumption that functional magnetic resonance imaging (fMRI) noise has constant volatility has recently been challenged by studies examining heteroscedasticity arising from head motion and physiological noise. The present study builds on this work using latest methods from the field of financial mathematics to model fMRI noise volatility.MethodsMulti-echo nd human fMRI scans were used and realised volatility was estimated. The Hurst parameter H ∈ (0, 1), which governs the roughness/irregularity of realised volatility time series, was estimated. Calibration of H was performed pathwise, using well-established neural network calibration tools.ResultsIn all experiments the volatility calibrated to values within the rough case, H < 0.5, and on average fMRI noise was very rough with 0.03 < H < 0.05. Some edge effects were also observed, whereby H was larger near the edges of the phantoms.DiscussionThe findings suggest that fMRI volatility is not only non-constant, but also substantially more irregular than a standard Brownian motion. Thus, further research is needed to examine the impact such pronounced oscillations in the volatility of fMRI noise have on data analyses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3