Aerobic metabolism in Vibrio cholerae is required for population expansion during infection

Author:

Van Alst Andrew J.,DiRita Victor J.ORCID

Abstract

AbstractVibrio cholerae is a bacterial pathogen that replicates to high cell density in the small intestine of human hosts leading to the diarrheal disease cholera. During infection, V. cholerae senses and responds to environmental signals that govern cellular responses. Spatial localization of V. cholerae within the intestine affects nutrient availability and therefore the metabolic pathways required for the replicative success of the pathogen. Metabolic processes used by V. cholerae to reach such high cell densities are not fully known. Here we seek to better define the metabolic traits that contribute to high levels of V. cholerae during infection by investigating mutant strains in key carbohydrate metabolism pathways. By disrupting the pyruvate dehydrogenase (PDH) complex and pyruvate formate-lyase (PFL), we could differentiate aerobic and anaerobic metabolic pathway involvement in V. cholerae proliferation. We demonstrate that oxidative metabolism is a key contributor to the replicative success of V. cholerae in vivo using an infant mouse model where PDH mutants were attenuated 100-fold relative to wild type for colonization. Additionally, metabolism of host substrates such as mucin were determined to support V. cholerae growth in vitro as a sole carbon source primarily in aerobic growth conditions. Mucin likely contributes to population expansion during human infection as it is a ubiquitous source of carbohydrates. These data highlight the importance of oxidative metabolism in the intestinal environment and warrants further investigation of how oxygen and other host substrates shape the intestinal landscape that ultimately influences bacterial disease. We conclude from our results that oxidative metabolism of host substrates such as mucin is a key driver of V. cholerae growth and proliferation during infection, leading to the substantial bacterial burden exhibited in cholera patients.ImportanceVibrio cholerae remains a challenge in the developing world and incidence of the disease it causes, cholera, is anticipated to increase with rising global temperatures and with emergent, highly infectious strains. At present, the underlying metabolic processes that support V. cholerae growth during infection are less well understood than specific virulence traits such as production of a toxin or pilus. In this study we determined that oxidative metabolism of host substrates such as mucin contribute significantly to V. cholerae population expansion in vivo. Identifying metabolic pathways critical for growth can provide avenues for controlling V. cholerae infection and the knowledge may be translatable to other pathogens of the gastrointestinal tract.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3