Network-aware reaction pattern recognition reveals regulatory signatures of mitochondrial dysfunction

Author:

Berg Jordan A.ORCID,Zhou YoujiaORCID,Ouyang YeyunORCID,Waller T. CameronORCID,Cluntun Ahmad A.ORCID,Conway Megan E.ORCID,Nowinski Sara M.ORCID,Van Ry Tyler,George IanORCID,Cox James E.ORCID,Wang BeiORCID,Rutter JaredORCID

Abstract

Metabolism forms a complex, interdependent network, and perturbations can have indirect effects that are pervasive. Identifying these patterns and their consequences is difficult, particularly when the effects occur across canonical pathways, and these difficulties have long acted as a bottleneck in metabolic data analysis. This challenge is compounded by technical limitations in metabolomics approaches that garner incomplete datasets. Current network-based tools generally utilize pathway-level analysis lacking the granular resolution required to provide context into the effects of all perturbations, regardless of magnitude, across the metabolic network. To address these shortcomings, we introduce algorithms that allow for the real-time extraction of regulatory patterns and trends from user data. To minimize the impact of missing measurements within the metabolic network, we introduce methods that enable complex pattern recognition across multiple reactions. These tools are available interactively within the user-friendly Metaboverse app (https://github.com/Metaboverse) to facilitate exploration and hypothesis generation. We demonstrate that expected signatures are accurately captured by Metaboverse. Using public lung adenocarcinoma data, we identify a previously undescribed multi-dimensional signature that correlated with survival outcomes in lung adenocarcinoma patients. Using a model of respiratory deficiency, we identify relevant and previously unreported regulatory patterns that suggest an important compensatory role for citrate during mitochondrial dysfunction. This body of work thus demonstrates that Metaboverse can identify and decipher complex signals from data that have been otherwise difficult to identify with previous approaches.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3