Boosting innate immunity: Asaia bacteria expressing a protein from Wolbachia determine macrophage activation and killing of Leishmania

Author:

Varotto-Boccazzi IlariaORCID,Epis SaraORCID,Arnoldi Irene,Corbett Yolanda,Gabrieli PaoloORCID,Paroni MoiraORCID,Nodari Riccardo,Basilico NicolettaORCID,Sacchi LucianoORCID,Gramiccia MarinaORCID,Gradoni LuigiORCID,Tranquillo VitoORCID,Bandi ClaudioORCID

Abstract

AbstractLeishmaniases are severe vector-borne diseases affecting humans and animals, caused by Leishmania protozoans. Immune polarization plays a major role in determining the outcome of Leishmania infections: hosts displaying M1-polarized macrophages are protected, while those biased on the M2 side acquire a chronic infection, that could develop into an overt and potentially deadly disease. The identification of the factors involved in M1 polarization is essential for the design of therapeutic and prophylactic interventions, including vaccines. Infection by the filarial nematode Dirofilaria immitis could be one of the factors that interfere with leishmaniasis in dogs. Indeed, filarial nematodes induce a partial skew of the immune response towards M1, likely caused by their bacterial endosymbionts, Wolbachia. Here we have examined the potential of AsaiaWSP, a bacterium engineered for the expression of the Wolbachia surface protein (WSP), as an inductor of M1 macrophage activation and Leishmania killing. Macrophages stimulated with AsaiaWSP displayed a strong leishmanicidal activity, comparable to that determined by the choice-drug amphotericin B. Additionally, AsaiaWSP determined the expression of markers of classical macrophage activation, including M1 cytokines, ROS and NO, and an increase in phagocytosis activity. Asaia not expressing WSP also induced macrophage activation, although at a lower extent compared to AsaiaWSP. In summary, our study, while providing a strong evidence for the immune-stimulating properties of Wolbachia, highlights the translational potential of AsaiaWSP in the areas of the immune-prophylaxis and therapy of leishmaniases, as well as of other diseases that could be subverted by M1 macrophage activation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3