Contributions and competition of Mg2+ and K+ in folding and stabilization of the Twister Ribozyme

Author:

Kognole Abhishek A.ORCID,MacKerell Alexander D.ORCID

Abstract

AbstractNative folded and compact intermediate states of RNA typically involve tertiary structures in the presence of divalent ions such as Mg2+ in a background of monovalent ions. In a recent study we showed how the presence of Mg2+ impacts the transition from partially unfolded to folded states through a “push-pull” mechanism where the ion both favors and disfavors the sampling of specific phosphate-phosphate interactions. To better understand the ion atmosphere of RNA in folded and partially folded states results from atomistic Umbrella Sampling and oscillating chemical potential Grand Canonical Monte Carlo/Molecular Dynamics (GCMC/MD) simulations are used to obtain atomic-level details of the distributions of Mg2+ and K+ ions around Twister RNA. Results show the presence of 100 mM Mg2+ to lead to increased charge neutralization over that predicted by counterion condensation theory. Upon going from partially unfolded to folded states overall charge neutralization increases at all studied ion concentrations that, while associated with an increase in the number of direct ion-phosphate interactions, is fully accounted for by the monovalent K+ ions. Furthermore, K+ preferentially interacts with purine N7 atoms of helical regions in partially unfolded states thereby potentially stabilizing them. Thus, both secondary helical structures and formation of tertiary structures leads to increased counterion condensation, thereby stabilizing those structural features of Twister. Notably, it is shown that K+ can act as a surrogate for Mg2+ by participating in specific interactions with non-sequential phosphate pairs that occur in the folded state, explaining the ability of Twister to self-cleave at sub-millimolar Mg2+ concentrations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3