Abstract
AbstractBackgroundThis study investigated the effect of accumulated doses on radio-photoluminescence glass dosimeters (RPLGDs) from measurements involving mega-voltage photons.MethodsForty-five commercially available RPLGDs were irradiated to estimate their dose responses. Photon beams of 6, 10, and 15 MV were irradiated onto the RPLGDs inside a phantom, which were divided into five groups with different doses and energies. Groups 1 and 2 were irradiated at 1, 5, 10, 50, and 100 Gy in a sequential manner; Group 3 was irradiated 10 times with a dose of 10 Gy; and Groups 4 and 5 followed the same method as that of Group 3, but with doses of 50 Gy and 100 Gy, respectively.ResultsFor the annealed Group 1, RPLGD exhibited a linearity response with variance within 5%. For the non-annealed Group 2, readings demonstrated hyperlinearity at 6 MV and 10 MV, and linearity at 15 MV. Following the 100 Gy irradiation, the readings for Group 2 were 118.7 ± 1.9%, 112.2 ± 2.7%, and 101.5 ± 2.3% at 6, 10, and 15 MV, respectively. For Groups 3, 4, and 5, the responsiveness of the RPLGDs gradually decreased as the number of repeated irradiations increased. The percentage readings for the 10th beam irradiation with respect to the readings for the primary beam irradiation were 84.6 ± 1.9%, 87.5 ± 2.4%, and 93.0 ± 3.0% at 6 MV, 10 MV, and 15 MV, respectively.ConclusionsThe non-annealed RPLGD response to dose was hyperlinear for the 6 MV and 10 MV photon beams but not for the 15 MV photon beam. Additionally, the annealed RPLGD exhibited a fading phenomenon when the measurement was repeated several times and demonstrated a relatively large fading effect at low energies than at high energies.
Publisher
Cold Spring Harbor Laboratory