Abstract
AbstractPurposeThis study assesses the feasibility of deep learning detection and classification of 3 retrievable inferior vena cava filters with similar radiographic appearances and emphasizes the importance of visualization methods to confirm proper detection and classification.Materials and MethodsThe fast.ai library with ResNet-34 architecture was used to train a deep learning classification model. A total of 442 fluoroscopic images (N=144 patients) from inferior vena cava filter placement or removal were collected. Following image preprocessing, the training set included 382 images (110 Celect, 149 Denali, 123 Günther Tulip), of which 80% were used for training and 20% for validation. Data augmentation was performed for regularization. A random test set of 60 images (20 images of each filter type), not included in the training or validation set, was used for evaluation. Total accuracy and receiver operating characteristic area under the curve were used to evaluate performance. Feature heatmaps were visualized using guided backpropagation and gradient-weighted class activation mapping.ResultsThe overall accuracy was 80.2% with mean receiver operating characteristic area under the curve of 0.96 for the validation set (N=76), and 85.0% with mean receiver operating characteristic area under the curve of 0.94 for the test set (N=60). Two visualization methods were used to assess correct filter detection and classification.ConclusionsA deep learning model can be used to automatically detect and accurately classify inferior vena cava filters on radiographic images. Visualization techniques should be utilized to ensure deep learning models function as intended.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献