Tumor Characterization using Unsupervised Learning of Mathematical Relations within Breast Cancer Data

Author:

Axenie Cristian,Kurz Daria

Abstract

AbstractDespite the variety of imaging, genetic and histopathological data used to assess tumors, there is still an unmet need for patient-specific tumor growth profile extraction and tumor volume prediction, for use in surgery planning. Models of tumor growth predict tumor size and require tumor biology-dependent parametrization, which hardly generalizes to cope with tumor variability among patients. In addition, the datasets are limited in size, owing to the restricted or single-time measurements. In this work, we address the shortcomings that incomplete biological specifications, the inter-patient variability of tumors, and the limited size of the data bring to mechanistic tumor growth models and introduce a machine learning model capable of characterizing a tumor, namely its growth pattern, phenotypical transitions, and volume. The model learns without supervision, from different types of breast cancer data the underlying mathematical relations describing tumor growth curves more accurate than three state-of-the-art models on three publicly available clinical breast cancer datasets, being versatile among breast cancer types. Moreover, the model can also, without modification, learn the mathematical relations among, for instance, histopathological and morphological parameters of the tumor and, combined with the growth curve, capture the (phenotypical) growth transitions of the tumor from a small amount of data. Finally, given the tumor growth curve and its transitions, our model can learn the relation among tumor proliferation-to-apoptosis ratio, tumor radius, and tumor nutrient diffusion length to estimate tumor volume, which can be readily incorporated within current clinical practice, for surgery planning. We demonstrate the broad unsupervised learning and prediction capabilities of our model through a series of experiments on publicly available clinical datasets.

Publisher

Cold Spring Harbor Laboratory

Reference23 articles.

1. 2018, W..G.: Germany Cancer Statistics. https://gco.iarc.fr/today/data/factsheets/populations/276-germany-fact-sheets.pdf (2018), [Online; accessed 15-04-2020]

2. Ductal Carcinoma in Situ of the Breast

3. Chen, Z. , Haykin, S. , Eggermont, J.J. , Becker, S. : Correlative learning: a basis for brain and adaptive systems, vol. 49. John Wiley & Sons (2008)

4. Outcome of patients with ductal carcinoma in situ untreated after diagnostic biopsy

5. Comen, E. , Gilewski, T.A. , Norton, L. : Tumor growth kinetics. Holland-Frei Cancer Medicine pp. 1–11 (2016)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3