Covid-19 Incidence Rate Evolution Modeling using Dual Wave Gaussian-Lorentzian Composite Functions

Author:

Poomari Radhakrishnan

Abstract

AbstractModeling the evolution of Covid-19 incidence rate is critical to deciding and assessing non-medical intervention strategies that can lead to successful containment of the pandemic. This research presents a mathematical model to empirically assess measures related to various pandemic containment strategies, their similarities and a probabilistic estimate on the evolution of Covid-19 incidence rates. The model is built on the principle that, the exponential rise and decay of the number of confirmed Covid-19 infections can be construed as a set of concurrent non-linear waves. These waves can be characterized by a linear combination of Gaussian and Cauchy Lorentz functions collectively termed as Gaussian-Lorentzian Composite (GLC) function. The GLC function is used for non-linear approximation of officially confirmed Covid-19 incidence rates in each country. Results of fitting GLC based models to incidence rate trends of 20 different countries proves that the models can empirically explain the growth and decay trajectory Covid-19 infections in a given population.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3