Diagnosis of Metabolic Syndrome using Machine Learning, Statistical and Risk Quantification Techniques: A Systematic Literature Review

Author:

Kakudi Habeebah AdamuORCID,Loo Chu KiongORCID,Moy Foong MingORCID

Abstract

AbstractMetabolic syndrome (MetS), known to substantially lower the quality of life is associated with the increased incidence of non-communicable diseases (NCDs) such as type II diabetes mellitus, cardiovascular diseases and cancer. Evidence suggests that MetS accounts for the highest global mortality rate. For the early and accurate diagnosis of MetS, various statistical and ML techniques have been developed to support its clinical diagnosis. We performed a systematic review to investigate the various statistical and machine learning techniques (ML) that have been used to support the clinical diagnoses of MetS from the earliest studies to January 2020. Published literature relating to statistical and ML techniques for the diagnosis of MetS were identified by searching five major scientific databases: PubMed, Science Direct, IEEE Xplore, ACM digital library, and SpringerLink. Fifty-three primary studies that met the inclusion criteria were obtained after screening titles, abstracts and full text. Three main types of techniques were identified: statistical (n = 10), ML (n = 40), and risk quantification (n = 3). Standardized Z-score is the only statistical technique identified while the ML techniques include principal component analysis, confirmatory factory analysis, artificial neural networks, multiple logistics regression, decision trees, support vector machines, random forests, and Bayesian networks. The areal similarity degree risk quantification, framingham risk score and simScore were the three risk quantification techniques identified. Evidence suggests that evaluated ML techniques, with accuracy ranging from 75.5% to 98.9%, can more accurately diagnose MetS than both statistical and risk quantification techniques. The standardised Z-score is the most frequent statistical technique identified. However, highlighted proof based on performance measures indicate that the decision tree and artificial neural network ML techniques have the highest predictive performance for the prediction of MetS. Evidence suggests that more accurate diagnosis of MetS is required to evaluate the predictive performance of the statistical and ML techniques.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3