Linking T cell receptor sequence to transcriptional profiles with clonotype neighbor graph analysis (CoNGA)

Author:

Schattgen Stefan A.ORCID,Guion Kate,Crawford Jeremy ChaseORCID,Souquette AishaORCID,Barrio Alvaro MartinezORCID,Stubbington Michael J.T.ORCID,Thomas Paul G.ORCID,Bradley PhilipORCID

Abstract

AbstractMulti-modal single-cell technologies capable of simultaneously assaying gene expression and surface phenotype across large numbers of immune cells have described extensive heterogeneity within these complex populations, in healthy and diseased states. In the case of T cells, these technologies have made it possible to profile clonotype, defined by T cell receptor (TCR) sequence, and phenotype, as reflected in gene expression (GEX) profile, surface protein expression, and peptide:MHC (pMHC) binding, across large and diverse cell populations. These rich, high-dimensional datasets have the potential to reveal new relationships between TCR sequence and T cell phenotype that go beyond identification of features shared by clonally related cells. In order to uncover these connections in an unbiased way, we developed a graph-theoretic approach---clonotype neighbor-graph analysis or “CoNGA”---that identifies correlations between GEX profile and TCR sequence through statistical analysis of a pair of T cell similarity graphs, one in which cells are linked based on gene expression similarity and another in which cells are linked by similarity of TCR sequence. Applying CoNGA across diverse human and mouse T cell datasets uncovered known and novel associations between TCR sequence features and cellular phenotype including the classical invariant T cell subsets; a novel defined population of human blood CD8+ T cells expressing the transcription factors HOBIT and HELIOS, NK-associated receptors, and a biased TCR repertoire, representing a potential previously undescribed lineage of “natural lymphocytes”; a striking association between usage of a specific V-beta gene segment and expression of the EPHB6 gene that is conserved between mouse and human; and TCR sequence determinants of differentiation in developing thymocytes. As the size and scale of single-cell datasets continue to grow, we expect that CoNGA will prove to be a useful tool for deconvolving complex relationships between TCR sequence and cellular state in single-cell applications.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3