Reconfiguration of Amplitude Driven Dominant Coupling Modes (DoCM) mediated by α-band in Adolescents with Schizophrenia Spectrum Disorders

Author:

Dimitriadis Stavros I.ORCID

Abstract

AbstractElectroencephalography (EEG) based biomarkers have been shown to correlated with the presence of psychotic disorders. Increased delta and decreased alpha power in psychosis indicate an abnormal arousal state. We investigated brain activity across the basic EEG frequencies and also dynamic functional connectivity of both intra and cross-frequency coupling that could reveal a neurophysiological biomarker linked to an aberrant modulating role of alpha frequency in adolescents with schizophrenia spectrum disorders (SSDs).A dynamic functional connectivity graph (DFCG) has been estimated using the imaginary part of phase lag value (iPLV) and correlation of the envelope (corrEnv). We analyzed DFCG profiles of electroencephalographic resting state (eyes closed) recordings of healthy controls (HC) (n=39) and SSDs subjects (n=45) in basic frequency bands {δ,θ,α1212,γ}. In our analysis, we incorporated both intra and cross-frequency coupling modes. Adopting our recent Dominant Coupling Mode (DoCM) model leads to the construction of an integrated DFCG (iDFCG) that encapsulates the functional strength and the DoCM of every pair of brain areas.We revealed significantly higher ratios of delta/alpha1,2 power spectrum in SSDs subjects versus HC. The probability distribution (PD) of amplitude driven DoCM mediated by alpha frequency differentiated SSDs from HC with absolute accuracy (100%). The network Flexibility Index (FI) was significantly lower for subjects with SSDs compared to the HC group.Our analysis supports a central role of alpha frequency alterations in the neurophysiological mechanisms of SSDs. Currents findings open up new diagnostic pathways to clinical detection of SSDs and supports the design of rational neurofeedback training.HighlightsRatios of delta/alpha1,2 relative power spectrum were significant higher in SSDs subjects compared to HCProbability distribution (PD) of amplitude driven DoCM mediated by alpha frequency differentiated SSDs from HC with 100%Network Flexibility index (FI) was significant lower for subjects with SSDs compared to HC group.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3