Cdc42 GTPase Activating Proteins (GAPs) Maintain Generational Inheritance of Cell Polarity and Cell Shape in Fission Yeast

Author:

Pino Marbelys Rodriguez,Nuñez Illyce,Chen ChuanORCID,Das Maitreyi E.ORCID,Wiley David J.,D’Urso Gennaro,Buchwald Peter,Vavylonis DimitriosORCID,Verde Fulvia

Abstract

AbstractThe highly conserved small GTPase Cdc42 regulates polarized cell growth and morphogenesis from yeast to humans. We previously reported that Cdc42 activation exhibits oscillatory dynamics in Schizosaccharomyces pombe cells. Mathematical modeling suggests that this dynamic behavior enables a variety of symmetric and asymmetric Cdc42 distributions to coexist in cell populations. For individual wild type cells, however, growth follows a stereotypical pattern where Cdc42 distribution is initially asymmetrical in young daughter cells and becomes more symmetrical as cell volume increases, enabling bipolar growth activation. To explore whether different states of Cdc42 activation are possible in a biological context, we examined S. pombe rga4Δ mutant cells, lacking the Cdc42 GTPase activating protein (GAP) Rga4. We found that monopolar rga4Δ mother cells divide asymmetrically leading to the emergence of both symmetric and asymmetric Cdc42 distributions in rga4Δ daughter cells. Using genetic screening approaches to identify mutants that alter the rga4Δ phenotype, we tested the predictions of different computational models that reproduce the unequal fate of daughter cells. We found experimentally that the unequal distribution of active Cdc42 GTPase in daughter cells is consistent with an unequal inheritance of another Cdc42 GAP, Rga6, in the two daughter cells. Our findings highlight the crucial role of Cdc42 GAP protein localization in determining the morphological fate of cell progeny and ensuring consistent Cdc42 activation and growth patterns across generations.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3