Oriented Soft DNA Curtains for Single Molecule Imaging

Author:

Kopūstas AurimasORCID,Ivanovaitė ŠarūnėORCID,Rakickas TomasORCID,Pocevičiūtė Ernesta,Paksaitė Justė,Karvelis TautvydasORCID,Zaremba MindaugasORCID,Manakova ElenaORCID,Tutkus MarijonasORCID

Abstract

AbstractOver the past twenty years, single-molecule methods have become extremely important for biophysical studies. These methods, in combination with new nanotechnological platforms, can significantly facilitate experimental design and enable faster data acquisition. A nanotechnological platform, which utilizes flow-stretch of immobilized DNA molecules, called DNA Curtains, is one of the best examples of such combinations. Here, we employed new strategies to fabricate a flow-stretch assay of stably immobilized and oriented DNA molecules using protein template-directed assembly. In our assay a protein template patterned on a glass coverslip served for directional assembly of biotinylated DNA molecules. In these arrays, DNA molecules were oriented to one another and maintained extended either by single- or both-ends immobilization to the protein templates. For oriented both-end DNA immobilization we employed heterologous DNA labeling and protein template coverage with the anti-digoxigenin antibody. In contrast to the single-end, both-ends immobilization does not require constant buffer flow for keeping DNAs in an extended configuration, allowing us to study protein-DNA interactions at more controllable reaction conditions. Additionally, we increased immobilization stability of the biotinylated DNA molecules using protein templates fabricated from traptavidin. Finally, we demonstrated that double-tethered Soft DNA Curtains can be used in nucleic acid-interacting protein (e.g. CRISPR-Cas9) binding assay that monitors binding location and position of individual fluorescently labeled proteins on DNA.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3