CaaX-like protease of cyanobacterial origin is required for complex plastid biogenesis in malaria parasites

Author:

Meister Thomas R.ORCID,Tang Yong,Pulkoski-Gross Michael J.,Yeh Ellen

Abstract

AbstractPlasmodiumparasites and related apicomplexans contain an essential “complex plastid” organelle of secondary endosymbiotic origin, the apicoplast. Biogenesis of this complex plastid poses a unique challenge requiring evolution of new cellular machinery. We previously conducted a mutagenesis screen for essential apicoplast biogenesis genes to discover organellar pathways with evolutionary and biomedical significance. Here we validate and characterize a gene candidate from our screen, Pf3D7_0913500. Using a conditional knockdown strain, we show that Pf3D7_0913500 depletion causes growth inhibition that is rescued by the sole essential product of the apicoplast, isopentenyl pyrophosphate (IPP), and results in apicoplast loss. Because Pf3D7_0913500 had no previous functional annotation, we name itapicoplast-minus IPP-rescued 4 (AMR4). AMR4 has an annotated CaaX Protease and Bacteriocin Processing (CPBP) domain, which in eukaryotes typically indicates a role in CaaX post-prenylation processing. Indeed, AMR4 is the only CaaX-like protease inPlasmodiumparasites which are known to require protein prenylation, and we confirm that the conserved catalytic residue of AMR4 is required for its apicoplast function. However, we unexpectedly find that AMR4 does not act in a CaaX post-prenylation processing pathway inP. falciparum. Instead, we find that AMR4 is imported into the apicoplast and is derived from a cyanobacterial CPBP gene which was retained through both primary and secondary endosymbiosis. Our findings suggest that AMR4 is not a true CaaX protease, but instead acts in a conserved, uncharacterized chloroplast pathway that has been retained for complex plastid biogenesis.ImportancePlasmodiumparasites, which cause malaria, and related apicomplexans are important human and veterinary pathogens. These parasites represent a highly divergent and understudied branch of eukaryotes, and as such often defy the expectations set by model organisms. One striking example of unique apicomplexan biology is the apicoplast, an essential but non-photosynthetic plastid derived from an unusual secondary (eukaryote-eukaryote) endosymbiosis. Endosymbioses are a major driver of cellular innovation, and apicoplast biogenesis pathways represent a hotspot for molecular evolution. We previously conducted an unbiased screen for apicoplast biogenesis genes inP. falciparumto uncover these essential and innovative pathways. Here, we validate a novel gene candidate from our screen and show that its role in apicoplast biogenesis does not match its functional annotation predicted by model eukaryotes. Our findings suggest that an uncharacterized chloroplast maintenance pathway has been reused for complex plastid biogenesis in this divergent branch of pathogens.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3