Dynamic changes in β-cell electrical activity and [Ca2+] regulates NFATc3 activation and downstream gene transcription

Author:

Miranda Jose G.,Schleicher Wolfgang E,Ramirez David G.,Landgrave Samantha P,Benninger Richard KPORCID

Abstract

AbstractDiabetes results from insufficient insulin secretion as a result of dysfunction to β-cells within the islet of Langerhans. Elevated glucose causes β-cell membrane depolarization and action potential generation, voltage gated Ca2+channel activation and oscillations in free-Ca2+activity ([Ca2+]), triggering insulin release. Nuclear Factor of Activated T-cell (NFAT) is a transcription factor that is regulated by increases in [Ca2+] and calceineurin (CaN) activation. NFAT regulation links cell activity with gene transcription in many systems, and within the β-cell regulates proliferation and insulin granule biogenesis. However the link between the regulation of β-cell electrical activity and oscillatory [Ca2+], with NFAT activation and downstream transcription is poorly understood. In this study we tested whether dynamic changes to β-cell electrical activity and [Ca2+] regulates NFAT activation and downstream transcription. In cell lines, mouse islets and human islets, including those from donors with type2 diabetes, we applied both agonists/antagonists of ion channels together with optogenetics to modulate β-cell electrical activity. Both glucose-induced membrane depolarization and optogenetic-stimulation triggered NFAT activation, and increased transcription of NFAT targets and intermediate early genes (IEGs). Importantly only conditions in which slow sustained [Ca2+] oscillations were generated led to NFAT activation and downstream transcription. In contrast in human islets from donors with type2 diabetes NFAT activation by glucose was diminished, but rescued upon pharmacological stimulation of electrical activity. Thus, we gain insight into the specific patterns of electrical activity that regulate NFAT activation and gene transcription and how this is disrupted in diabetes.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3