Abstract
SummaryReliable delivery of presynaptic material, including active zone and synaptic vesicle proteins from neuronal somata to synaptic terminals is prerequisite for faithful synaptogenesis and neurotransmission. However, molecular mechanisms controlling the somatic assembly of presynaptic precursors remain insufficiently understood. Here we show that in mutants of the small GTPase RAB2 active zone and synaptic vesicle proteins accumulated in the neuronal somata at the trans-Golgi network and were consequently depleted at synaptic terminals, provoking neurotransmission deficits. The ectopic presynaptic material accumulations consisted of heterogeneous vesicles and short tubules of 40×60 nm and segregated in subfractions either positive for active zone proteins or co-positive for synaptic vesicle proteins and LAMP1, a lysosomal membrane protein. Genetically, rab2 behaved epistatic over arl8, a lysosomal adaptor controlling axonal export of precursors. Collectively, we here identified a Golgi-associated assembly sequence in presynaptic precursor vesicle biogenesis controlled by RAB2 dependent membrane remodelling and protein sorting at the trans-Golgi.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献