Getting stuck in a rut as an emergent feature of a dynamic decision-making system

Author:

Warburton MatthewORCID,Brookes Jack,Hasan Mohamed,Leonetti Matteo,Dogar Mehmet,Wang He,Cohn Anthony G.,Mushtaq FaisalORCID,Mon-Williams Mark A.

Abstract

AbstractHuman sensorimotor decision-making has a tendency to get ‘stuck in a rut’, being biased towards selecting a previously implemented action structure (‘hysteresis’). Existing explanations cannot provide a principled account of when hysteresis will occur. We propose that hysteresis is an emergent property of a dynamical system learning from the consequences of its actions. To examine this, 152 participants moved a cursor to a target on a tablet device whilst avoiding an obstacle. Hysteresis was observed when the obstacle moved sequentially across the screen between trials, but not with random obstacle placement. Two further experiments (n = 20) showed an attenuation when time and resource constraints were eased. We created a simple computational model capturing dynamic probabilistic estimate updating that showed the same patterns of results. This provides the first computational demonstration of how sensorimotor decision-making can get ‘stuck in a rut’ through the dynamic updating of its probability estimates.Significance StatementHumans show a bias to select the organisational structure of a recently carried out action, even when an alternative option is available with lower costs. This ‘hysteresis’ is said to be more efficient than creating a new plan and it has been interpreted as a ‘design feature’ within decision-making systems. We suggest such teleological arguments are redundant, with hysteresis being a naturally emergent property of a dynamic control system that evolved to operate effectively in an uncertain and partially observable world. Empirical experimentation and simulations from a ‘first principle’ computational model of decision-making were consistent with our hypothesis. The identification of such a mechanism can inform robotics research, suggesting how robotic agents can show human-like flexibility in complex dynamic environments.

Publisher

Cold Spring Harbor Laboratory

Reference48 articles.

1. Adaptable history biases in human perceptual decisions

2. Autonomous Mechanism of Internal Choice Estimate Underlies Decision Inertia

3. Random effects structure for confirmatory hypothesis testing: Keep it maximal

4. Barton, K. (2020). MuMIn: Multi-model inference (Version 1.43.6) [Computer software]. https://CRAN.R-project.org/package=MuMIn

5. Fitting linear mixed-effects models using lme4;Journal of Statistical Software,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3