A Genomics Resource for Genetics, Physiology, and Breeding of West African Sorghum

Author:

Faye Jacques M.,Maina Fanna,Akata Eyanawa A.,Sine Bassirou,Diatta Cyril,Mamadou Aissata,Marla Sandeep,Bouchet Sophie,Teme Niaba,Rami Jean-Francois,Fonceka Daniel,Cisse Ndiaga,Morris Geoffrey P.ORCID

Abstract

AbstractLocal landrace and breeding germplasm is a useful source of genetic diversity for regional and global crop improvement initiatives. Sorghum (Sorghum bicolorL. Moench) in West Africa has diversified across a mosaic of cultures and end-uses, and along steep precipitation and photoperiod gradients. To facilitate germplasm utilization, a West African sorghum association panel (WASAP) of 756 accessions from national breeding programs of Niger, Mali, Senegal, and Togo was assembled and characterized. Genotyping-by-sequencing was used to generate 159,101 high-quality biallelic SNPs, with 43% in intergenic regions and 13% in genic regions. High genetic diversity was observed within the WASAP (π = 0.00045), only slightly less than in a global diversity panel (π = 0.00055). Linkage disequilibrium decayed to background level (r2< 0.1) by ~50 kb in the WASAP. Genome-wide diversity was structured both by botanical type, and by populations within botanical type, with eight ancestral populations identified. Most populations were distributed across multiple countries, suggesting several potential common gene pools across the national programs. Genome-wide association studies of days to flowering and plant height revealed eight and three significant quantitative trait loci (QTL), respectively, with major height QTL at canonical height lociDw3andSbHT7.1. Colocalization of two of eight major flowering time QTL with flowering genes previously described in US germplasm (Ma6andSbCN8) suggests that photoperiodic flowering in WA sorghum is conditioned by both known and novel genes. This genomic resource provides a foundation for genomics-enabled breeding of climate-resilient varieties in West Africa.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3