A flagellate-to-amoeboid switch in the closest living relatives of animals

Author:

Brunet ThibautORCID,Albert MarvinORCID,Roman WilliamORCID,Spitzer Danielle C.ORCID,King NicoleORCID

Abstract

The evolution of different cell types was a key process of early animal evolution1–3. Two fundamental cell types, epithelial cells and amoeboid cells, are broadly distributed across the animal tree of life4,5 but their origin and early evolution are unclear. Epithelial cells are polarized, have a fixed shape and often bear an apical cilium and microvilli. These features are shared with choanoflagellates – the closest living relatives of animals – and are thought to have been inherited from their last common ancestor with animals1,6,7. The deformable amoeboid cells of animals, on the other hand, seem strikingly different from choanoflagellates and instead evoke more distantly related eukaryotes, such as diverse amoebae – but it has been unclear whether that similarity reflects common ancestry or convergence8. Here, we show that choanoflagellates subjected to spatial confinement differentiate into an amoeboid phenotype by retracting their flagella and microvilli, generating blebs, and activating myosin-based motility. Choanoflagellate cell crawling is polarized by geometrical features of the substrate and allows escape from confined microenvironments. The confinement-induced amoeboid switch is conserved across diverse choanoflagellate species and greatly expands the known phenotypic repertoire of choanoflagellates. The broad phylogenetic distribution of the amoeboid cell phenotype across animals9–14 and choanoflagellates, as well as the conserved role of myosin, suggests that myosin-mediated amoeboid motility was present in the life history of their last common ancestor. Thus, the duality between animal epithelial and crawling cells might have evolved from a temporal phenotypic switch between flagellate and amoeboid forms in their single-celled ancestors3,15,16.

Publisher

Cold Spring Harbor Laboratory

Reference98 articles.

1. The invasin D protein from Yersinia pseudotuberculosis selectively binds the Fab region of host antibodies and affects colonization of the intestine

2. The evolution of cell types in animals: emerging principles from molecular studies

3. The origin of Metazoa: a unicellular perspective

4. Brusca, R. C. & Brusca, G. J. Invertebrates. (Sinauer Associates, Inc., 2003).

5. Nielsen, C. Animal Evolution. Interrelationships of the living phyla. (Oxford University Press, 2012).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolution of the centrosome, from the periphery to the center;Current Opinion in Structural Biology;2021-02

2. Origins of eukaryotic excitability;Philosophical Transactions of the Royal Society B: Biological Sciences;2021-01-25

3. Towards understanding the origin of animal development;Development;2020-12-01

4. The nucleus measures shape changes for cellular proprioception to control dynamic cell behavior;Science;2020-10-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3