Photoperiod-Induced Neurotransmitter Switching in the Circadian Pacemaker Regulates Hypothalamic Dopamine Expression

Author:

Porcu AlessandraORCID,Booreddy Sathwik,Welsh David K.,Dulcis DavideORCID

Abstract

AbstractLight, circadian clocks, and rhythmic behaviors interact closely to produce a temporal order that is essential for the survival of most living organisms. In mammals, the principal circadian pacemaker in the brain is the suprachiasmatic nucleus (SCN), which receives direct retinal input and synchronizes itself and other brain regions to the external light-dark cycle. Altered day length (photoperiod) and disrupted circadian rhythms are associated with impaired memory and mood in both humans and animal models. Prior work demonstrated that altering photoperiod can change neurotransmitter (NT) expression in the periventricular nucleus (PeVN) of the hypothalamus in adult rat brain. Here we show that neuromedin S-(NMS-) and vasoactive intestinal polypeptide-(VIP-) expressing neurons in the SCN also display photoperiod-induced neurotransmitter switching. Such photoperiod-dependent NT plasticity is retained in Bmal1-KO mice, indicating that NT plasticity in the SCN does not require a functional circadian clock. Utilizing a conditional viral DO-DIO vector as an historical marker of NT expression in the SCN, we further reveal that short-day photoperiod induces a cluster of non-NMS-expressing neurons to undergo NT switching and acquire the NMS phenotype. Selective chemogenetic activation of NMS neurons, but not VIP neurons, during the dark phase induces a significant delay in the timing of locomotor activity onset and is sufficient to increase the number of dopaminergic neurons in the PeVN. Our findings provide novel insights into molecular adaptations of the SCN neuronal network in response to altered photoperiod that affect neuronal circuit function in the hypothalamus and lead to changes in circadian behavior.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3