Author:
Bos Hannah,Oswald Anne-Marie,Doiron Brent
Abstract
AbstractSynaptic inhibition is the mechanistic backbone of a suite of cortical functions, not the least of which is maintaining overall network stability as well as modulating neuronal gain. Past cortical models have assumed simplified recurrent networks in which all inhibitory neurons are lumped into a single effective pool. In such models the mechanics of inhibitory stabilization and gain control are tightly linked in opposition to one another – meaning high gain coincides with low stability and vice versa. This tethering of stability and response gain restricts the possible operative regimes of the network. However, it is now well known that cortical inhibition is very diverse, with molecularly distinguished cell classes having distinct positions within the cortical circuit. In this study, we analyze populations of spiking neuron models and associated mean-field theories capturing circuits with pyramidal neurons as well as parvalbumin (PV) and somatostatin (SOM) expressing interneurons. Our study outlines arguments for a division of labor within the full cortical circuit where PV interneurons are ideally positioned to stabilize network activity, whereas SOM interneurons serve to modulate pyramidal cell gain. This segregation of inhibitory function supports stable cortical dynamics over a large range of modulation states. Our study offers a blueprint for how to relate the circuit structure of cortical networks with diverse cell types to the underlying population dynamics and stimulus response.
Publisher
Cold Spring Harbor Laboratory
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献