Epigenetic Consequences of Hormonal Interactions between Opposite-sex Twin Fetuses

Author:

Kong Siming,Peng Yong,Chen Wei,Ma Xinyi,Wei Yuan,Zhao Yangyu,Li Rong,Yan Liying,Qiao Jie

Abstract

AbstractIn human opposite-sex twins, certain phenotypic traits of the female are affected negatively by testosterone transfer from the male, while the male may or may not be affected by the female in utero. However, no study was carried out to uncover the epigenetic basis of these effects. Here, we generated DNA methylation data from 54 newborn twins and histone modification data from 14 newborn twins, including female-female (FF), female-male (FM), and male-male (MM) newborn twins, to exclude the effects of postnatal environment and socialization, and investigated the epigenetic consequences of prenatal interactions between female and male gonadal hormones. We found that FM-Fs (female in FM twins) were distinguishable from FF twins by their DNA methylome, as were FM-Ms (male in FM twins) from MM twins. The correlation between genome-wide DNA methylation of females and males showed that FM-Fs, but not FFs, were closer to males from FM-Ms and MMs. Interestingly, the DNA methylomic differences between FM-Fs and FFs, but not those between FM-Ms and MMs, were linked to cognition and the nervous system. Meanwhile, FM-Ms and MMs, but not FM-Fs and FFs, displayed differential histone modification of H3K4me3, which were linked to immune responses. These findings provide epigenetic evidence for the twin testosterone transfer hypothesis and explain how prenatal hormone exposure is linked to reported and novel traits of childhood and adult through the epigenome in opposite-sex twins.Author SummaryPrenatal exposure to testosterone may affect physiological, cognitive, and behavioral traits in females with male co-twins, while the males in opposite-sex twins present weak and inconsistent influences. In this study, we systematically investigated the hormonal interactions between opposite-sex twins in newborns from epigenetics including DNA methylation and histone modifications. We show that DNA methylome in FM-Fs (female in FM twins) was different from FF twins and their DNA methylomic differences were associated with cognition and the nervous system. We also suggest that FM-Ms (male in FM twins) were distinguishable from MM twins by their DNA methylome and FM-Ms versus MMs displayed differential histone modification of H3K4me3, which were linked to immune responses. Our study provides insight into the epigenetic explanation for hormonal influences between opposite-sex fetuses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3