Extensive proteomic and transcriptomic changes quench the TCR/CD3 activation signal of latently HIV-1 infected T cells

Author:

Carlin EricORCID,Greer BraxtonORCID,Duverger AlexandraORCID,Wagner Frederic,Moylan DavidORCID,Dalecki Alexander,Samuel Shekwonya,Perez MildredORCID,Lowman KelseyORCID,Sabbaj SteffanieORCID,Kutsch Olaf

Abstract

ABSTRACTAlthough the ability of HIV-1 to reside in a latent state in CD4+ T cells constitutes a critical hurdle to a curative therapy, the biomolecular mechanisms by which latent HIV-1 infection is established and maintained are only partially understood. Ex vivostudies have shown that T cell receptor/CD3 stimulation only triggered HIV-1 reactivation in a fraction of the latently infected CD4+ T cell reservoir, suggesting that parts of the T cell population hosting latent HIV-1 infection events are altered to be TCR/CD3-activation-inert. We provide experimental evidence that HIV-1 infection of primary T cells and T cell lines indeed generates a substantial amount of TCR/CD3 activation-inert latently infected T cells. HIV-1 induced host cell TCR/CD3 inertness is thus a conserved mechanism that contributes to the stability of latent HIV-1 infection. Proteomic and genome-wide RNA-level analysis comparing CD3-responsive and CD3-inert latently HIV-1 infected T cells, followed by software-based integration of the data into protein-protein interaction networks (PINs) suggested two phenomena to govern CD3-inertness: (i) the presence of extensive transcriptomic noise that affected the efficacy of CD3 signaling and (ii) defined changes to specific signaling pathways. Validation experiments demonstrated that compounds known to increase transcriptomic noise further diminished the ability of TCR/CD3 stimulation to trigger HIV-1 reactivation. Conversely, targeting specific central nodes in the generated PINs such as STAT3 improved the ability of TCR/CD3 activation to trigger HIV-1 reactivation in T cell lines and primary T cells. The data emphasize that latent HIV-1 infection is largely the result of extensive, stable biomolecular changes to the signaling network of the host T cells harboring latent HIV-1 infection events. In extension, the data imply that therapeutic restoration of host cell TCR/CD3 responsiveness could enable gradual reservoir depletion without the need for therapeutic activators, driven by cognate antigen recognition.AUTHOR SUMMARYA curative therapy for HIV-1 infection will at least require the eradication of a small pool of CD4+ helper T cells in which the virus can persist in a latent state, even after years of successful antiretroviral therapy. It has been assumed that activation of these viral reservoir T cells will also reactivate the latent virus, which is a prerequisite for the destruction of these cells. Remarkably, this is not the case and following application of even the most potent stimuli that activate normal T cells through their T cell receptor, a large portion of the latent virus pool remains in a dormant state. Herein we demonstrate that a large part of latent HIV-1 infection events reside in T cells that have been rendered activation inert by the actual infection event. We provide a systemwide, biomolecular description of the changes that render latently HIV-1 infected T cells activation inert and using this description, devise pharmacologic interference strategies that render initially activation inert T cells responsive to stimulation. This in turn allows for efficient triggering of HIV-1 reactivation in a large part of the latently HIV-1 infected T cell reservoir.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3