A prediction model based on machine learning for diagnosing the early COVID-19 patients

Author:

Sun Nan-Nan,Yang Ya,Tang Ling-Ling,Dai Yi-Ning,Gao Hai-Nv,Pan Hong-Ying,Ju Bin

Abstract

AbstractWith the dramatically fast spread of COVID-9, real-time reverse transcription polymerase chain reaction (RT-PCR) test has become the gold standard method for confirmation of COVID-19 infection. However, RT-PCR tests are complicated in operation andIt usually takes 5-6 hours or even longer to get the result. Additionally, due to the low virus loads in early COVID-19 patients, RT-PCR tests display false negative results in a number of cases. Analyzing complex medical datasets based on machine learning provides health care workers excellent opportunities for developing a simple and efficient COVID-19 diagnostic system. This paper aims at extracting risk factors from clinical data of early COVID-19 infected patients and utilizing four types of traditional machine learning approaches including logistic regression(LR), support vector machine(SVM), decision tree(DT), random forest(RF) and a deep learning-based method for diagnosis of early COVID-19. The results show that the LR predictive model presents a higher specificity rate of 0.95, an area under the receiver operating curve (AUC) of 0.971 and an improved sensitivity rate of 0.82, which makes it optimal for the screening of early COVID-19 infection. We also perform the verification for generality of the best model (LR predictive model) among Zhejiang population, and analyze the contribution of the factors to the predictive models. Our manuscript describes and highlights the ability of machine learning methods for improving the accuracy and timeliness of early COVID-19 infection diagnosis. The higher AUC of our LR-base predictive model makes it a more conducive method for assisting COVID-19 diagnosis. The optimal model has been encapsulated as a mobile application (APP) and implemented in some hospitals in Zhejiang Province.

Publisher

Cold Spring Harbor Laboratory

Reference36 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3