Abstract
ABSTRACTThe enteric nervous system is essential for normal gastrointestinal function, but evidence regarding postnatal enteric neurogenesis is conflicting. Using zebrafish as a model, we explored the origin of enteric neurons that arise in post-embryonic life in normal development and injury, and tested effects of the 5-HT4 receptor agonist, prucalopride.To assess enteric neurogenesis, all enteric neurons were photoconverted prior to time-lapse imaging to detect emergence of new neurons. Injury was modeled by two-photon laser ablation of enteric neurons. Lineage tracing was performed with neural tube injections of lipophilic dye and with an inducible Sox10-Cre line. Lastly, we tested prucalopride’s effect on post-embryonic enteric neurogenesis.The post-embryonic zebrafish intestine appears to lack resident neurogenic precursors and enteric glia. However, enteric neurogenesis persists post-embryonically during development and after injury. New enteric neurons arise from trunk neural crest-derived Schwann cell precursors. Prucalopride increases enteric neurogenesis in normal development and after injury if exposure occurs prior to injury.Enteric neurogenesis persists in the post-embryonic period in both normal development and injury, appears to arise from gut-extrinsic Schwann cell precursors, and is promoted by prucalopride.SUMMARY STATEMENTTrunk crest-derived enteric neurogenesis is poorly understood. We find post-embryonic zebrafish lack resident neuronal precursors yet enteric neurogenesis from trunk crest-derived precursors occurs in development, injury, and is promoted by prucalopride.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献