Fluoxetine rescues rotarod motor deficits in Mecp2 heterozygous mouse model of Rett syndrome via brain serotonin

Author:

Villani ClaudiaORCID,Sacchetti GiuseppinaORCID,Carli MirjanaORCID,Invernizzi Roberto W.ORCID

Abstract

AbstractMotor skill is a specific area of disability of Rett syndrome (RTT), a rare disorder occurring almost exclusively in girls, caused by loss-of-function mutations of the X-linked methyl-CpG-binding protein2 (MECP2) gene, encoding the MECP2 protein, a member of the methyl-CpG-binding domain nuclear proteins family. Brain 5-HT, which is defective in RTT patients and Mecp2 mutant mice, regulates motor circuits and SSRIs enhance motor skill learning and plasticity.In the present study, we used heterozygous (Het) Mecp2 female and Mecp2-null male mice to investigate whether fluoxetine, a SSRI with pleiotropic effects on neuronal circuits, rescues motor coordination deficits. Repeated administration of 10 mg/kg fluoxetine fully rescued rotarod deficit in Mecp2 Het mice regardless of age, route of administration or pre-training to rotarod. The motor improvement was confirmed in the beam walking test while no effect was observed in the hanging-wire test, suggesting a preferential action of fluoxetine on motor coordination. Citalopram mimicked the effects of fluoxetine, while the inhibition of 5-HT synthesis abolished the fluoxetine-induced improvement of motor coordination. Mecp2 null mice, which responded poorly to fluoxetine in the rotarod, showed reduced 5-HT synthesis in the prefrontal cortex, hippocampus and striatum, and reduced efficacy of fluoxetine in raising extracellular 5-HT as compared to female mutants. No sex differences were observed in the ability of fluoxetine to desensitize 5-HT1A autoreceptors upon repeated administration. These findings indicate that fluoxetine rescues motor coordination in Mecp2 Het mice through its ability to enhance brain 5-HT and suggest that drugs enhancing 5-HT neurotransmission may have beneficial effects on motor symptoms of RTT.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3