Mechanotransduction and dynamic outflow regulation in trabecular meshwork requires Piezo1 channels

Author:

Yarishkin OlegORCID,Phuong Tam T. T.,Baumann Jackson M.ORCID,De Ieso Michael L.,Vazquez-Chona Felix,Rudzitis Christopher N.ORCID,Sundberg Chad,Lakk MonikaORCID,Stamer W. DanielORCID,Križaj DavidORCID

Abstract

AbstractMechanosensitivity of the trabecular meshwork (TM) is a key determinant of intraocular pressure (IOP) yet our understanding of the molecular mechanisms that subserve it remains in its infancy. Here, we show that mechanosensitive Piezo1 channels modulate the TM pressure response via calcium signaling and dynamics of the conventional outflow pathway. Pressure steps evoked fast, inactivating cation currents and calcium signals that were inhibited by Ruthenium Red, GsMTx4 and Piezo1 shRNA. Piezo1 expression was confirmed by transcript and protein analysis, and by visualizing Yoda1-mediated currents and [Ca2+]i elevations in primary human TM cells. Piezo1 activation was obligatory for transduction of physiological shear stress and was coupled to reorganization of F-actin cytoskeleton and focal adhesions. The importance of Piezo1 channels as pressure sensors was shown by the GsMTx4 -dependence of the pressure-evoked current and conventional outflow function. We also demonstrate that Piezo1 collaborates with the stretch-activated TRPV4 channel, which mediated slow, delayed currents to pressure steps. Collectively, these results suggest that TM mechanosensitivity utilizes kinetically, regulatory and functionally distinct pressure transducers to inform the cells about force-sensing contexts. Piezo1-dependent control of shear flow sensing, calcium homeostasis, cytoskeletal dynamics and pressure-dependent outflow suggests a novel potential therapeutic target for treating glaucoma.Significance StatementTrabecular meshwork (TM) is a highly mechanosensitive tissue in the eye that regulates intraocular pressure through the control of aqueous humor drainage. Its dysfunction underlies the progression of glaucoma but neither the mechanisms through which TM cells sense pressure nor their role in aqueous humor outflow are understood at the molecular level. We identified the Piezo1 channel as a key TM transducer of tensile stretch, shear flow and pressure. Its activation resulted in intracellular signals that altered organization of the cytoskeleton and cell-extracellular matrix contacts, and modulated the trabecular component of aqueous outflow whereas another channel, TRPV4, mediated a delayed mechanoresponse. These findings provide a new mechanistic framework for trabecular mechanotransduction and its role in the regulation of fast fluctuations in ocular pressure, as well as chronic remodeling of TM architecture that epitomizes glaucoma.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3