Abstract
ABSTRACTThe relationship between parasite virulence and transmission is a pillar of evolutionary theory that has specific implications for public health. Part of this canon involves the idea that virulence and free-living survival (a key component of transmission) may have different relationships in different host-parasite systems. Most examinations of the evolution of virulence-transmission relationships—theoretical or empirical in nature—tend to focus on the evolution of virulence, with transmission a secondary consideration. And even within transmission studies, the focus on free-living survival is a smaller subset, though recent studies have examined its importance in the ecology of infectious diseases. Few studies have examined the epidemic-scale consequences of variation in survival across different virulence-survival relationships. In this study, we utilize a mathematical model motivated by aspects of SARS-CoV-2 natural history to investigate how evolutionary changes in survival may influence several aspects of disease dynamics at the epidemiological scale. Across virulence-survival relationships (where these traits are positively or negatively correlated), we found that small changes (5% above and below the nominal value) in survival can have a meaningful effect on certain outbreak features, including theR0, and the size of the infectious peak in the population. These results highlight the importance of properly understanding the mechanistic relationship between virulence and parasite survival, as evolution of increased survival across different relationships with virulence will have considerably different epidemiological signatures.
Publisher
Cold Spring Harbor Laboratory