Modelling testing frequencies required for early detection of a SARS-CoV-2 outbreak on a university campus

Author:

Martin Natasha K,Schooley Robert T,De Gruttola Victor

Abstract

BackgroundEarly detection and risk mitigation efforts are essential for averting large outbreaks of SARS-CoV-2. Active surveillance for SARS-CoV-2 can aid in early detection of outbreaks, but the testing frequency required to identify an outbreak at its earliest stage is unknown. We assess what testing frequency is required to detect an outbreak before there are 10 detectable infections.MethodsA dynamic compartmental transmission model of SARS-CoV-2 was developed to simulate spread among a university community. After introducing a single infection into a fully susceptible population, we calculate the probability of detecting at least one case on each succeeding day with various NAT testing frequencies (daily testing achieving 25%, 50%, 75%, and 100% of the population tested per month) assuming an 85% test sensitivity. A proportion of infected individuals (varied from 1–60%) are assumed to present to health services (HS) for symptomatic testing. We ascertain the expected number of detectable infections in the community when there is a > 90% probability of detecting at least 1 case. Sensitivity analyses examine impact of transmission rates (Rt = 0 = 2, 2.5,3), presentation to HS (1%/5%/30%/60%), and pre-existing immunity (0%/10%)ResultsAssuming an 85% test sensitivity, identifying an outbreak with 90% probability when the expected number of detectable infections is 9 or fewer requires NAT testing of 100% of the population per month; this result holds for all transmission rates and all levels of presentation at health services we considered. If 1% of infected people present at HS and Rt=0=3, testing 75%/50%/25% per month could identify an outbreak when the expected numbers of detectable infections are 12/17/30 respectively; these numbers decline to 9/11/12 if 30% of infected people present at HS. As proportion of infected individuals present at health services increases, the marginal impact of active surveillance is reduced. Higher transmission rates result in shorter time to detection but also rapidly escalating cases without intervention. Little differences were observed with 10% pre-existing immunity.ConclusionsWidespread testing of 100% of the campus population every month is required to detect an outbreak when there are fewer than 9 detectable infections for the scenarios examined, but high presentation of symptomatic people at HS can compensate in part for lower levels of testing. Early detection is necessary, but not sufficient, to curtail disease outbreaks; the proposed testing rates would need to be accompanied by case isolation, contact tracing, quarantine, and other risk mitigation and social distancing interventions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3